Physics 216 Mathematical Physics
 Quiz 1, October 25 2013, Time: 90 minutes

1. Let \vec{v}, \vec{w} be three dimensional complex vectors given by

$$
\vec{v}=(1,3-i, 2+3 i), \quad \vec{w}=(-4-4 i, 1+2 i, 3-i)
$$

Compute the inner products $(\vec{v}, \vec{v}),(\vec{w}, \vec{w}),(\vec{v}, \vec{w})$ and verify the Schwarz's inequality

$$
|(\vec{v}, \vec{w})|^{2} \leq(\vec{v}, \vec{v})(\vec{w}, \vec{w})
$$

2. Under what conditions on the scalar x do the vectors $(0,1, x),(x, 0,1),(x, 1,1+x)$ form a basis of a three dimensional vector space.
3. Which of the following three definitions of transformations on the vector space of polynomials P give linear transformations
(a) $T p(x)=p\left(x^{2}\right)$
(b) $T p(x)=(p(x))^{2}$
(c) $T p(x)=x^{2} p(x)$
4. Consider the matrix $A=\left(\begin{array}{ll}1 & 2 \\ 3 & 2\end{array}\right)$. Find the eigenvalues and eigenvectors of A. Determine the diagonalizing matrix P.
5. Let R be the the transformation on n dimensional vectors such that $\vec{x}^{\prime}=R \vec{x}$. Find the condition on the matrices R such that the length of the vector (\vec{x}, \vec{x}) remains unchanged.
6. Consider the vector field $F=\left(x+y^{2}\right) \vec{i}+(x y-1) \vec{j}$. Evaluate the line integral $\oint_{C} \vec{F} \cdot \overrightarrow{d r}$ first for the circle with the center anywhere on the x-axis and second for the square of vertices $(0,0),(1,-1),(2,0),(1,1)$. Is the vector \vec{F} conservative.
7. Evaluate the surface integral $\int_{S} \vec{F} \cdot \overrightarrow{d a}$ for $\vec{F}=x^{2} \vec{i}+y^{2} \vec{j}+z^{2} \vec{k}$ and S consists the faces of the unit cube $0 \leq x \leq 1,0 \leq y \leq 1,0 \leq z \leq 1$.
8. Find $\vec{\nabla} \cdot \vec{F}$ for $\vec{F}=\rho^{3} \widehat{\rho}+\rho^{2} \sin \varphi \widehat{\varphi}+z^{2} \widehat{z}$ in cylindrical coordinates.
9. Show the identity $\vec{\nabla} \times(\vec{\nabla} \times \vec{V})=\vec{\nabla}(\vec{\nabla} \cdot \vec{V})-\nabla^{2} \vec{V}$.
10. Let

$$
\delta_{n}(x)= \begin{cases}0 & |x|>\frac{1}{2 n} \\ n & |x|<\frac{1}{2 n}\end{cases}
$$

Evaluate the integral $\int_{-\infty}^{\infty} f(x) \delta_{n}(x-a) d x$.

