Physics 216 Mathematical Physics Quiz 1, October 25 2013, Time: 90 minutes

1. Let $\overrightarrow{v}, \overrightarrow{w}$ be three dimensional complex vectors given by

$$\vec{v} = (1, 3 - i, 2 + 3i), \qquad \vec{w} = (-4 - 4i, 1 + 2i, 3 - i)$$

Compute the inner products $(\vec{v}, \vec{v}), (\vec{w}, \vec{w}), (\vec{v}, \vec{w})$ and verify the Schwarz's inequality

$$\left|\left(\overrightarrow{v},\overrightarrow{w}\right)\right|^{2}\leq\left(\overrightarrow{v},\overrightarrow{v}\right)\left(\overrightarrow{w},\overrightarrow{w}\right)$$

- 2. Under what conditions on the scalar x do the vectors (0, 1, x), (x, 0, 1), (x, 1, 1 + x) form a basis of a three dimensional vector space.
- 3. Which of the following three definitions of transformations on the vector space of polynomials P give linear transformations
 - (a) $Tp(x) = p(x^2)$
 - (b) $Tp(x) = (p(x))^2$
 - (c) $Tp(x) = x^2 p(x)$

10. Let

- 4. Consider the matrix $A = \begin{pmatrix} 1 & 2 \\ 3 & 2 \end{pmatrix}$. Find the eigenvalues and eigenvectors of A. Determine the diagonalizing matrix P.
- 5. Let R be the transformation on n dimensional vectors such that $\overrightarrow{x'} = R\overrightarrow{x}$. Find the condition on the matrices R such that the length of the vector $(\overrightarrow{x}, \overrightarrow{x})$ remains unchanged.
- 6. Consider the vector field $F = (x + y^2) \overrightarrow{i} + (xy 1) \overrightarrow{j}$. Evaluate the line integral $\oint_C \overrightarrow{F} \cdot d\overrightarrow{r}$ first for the circle with the center anywhere on the x-axis and second for the square of vertices (0,0), (1,-1), (2,0), (1,1). Is the vector \overrightarrow{F} conservative.
- 7. Evaluate the surface integral $\int_{S} \overrightarrow{F} \cdot \overrightarrow{da}$ for $\overrightarrow{F} = x^2 \overrightarrow{i} + y^2 \overrightarrow{j} + z^2 \overrightarrow{k}$ and S consists the faces of the unit cube $0 \le x \le 1, 0 \le y \le 1, 0 \le z \le 1$.
- 8. Find $\overrightarrow{\nabla} \cdot \overrightarrow{F}$ for $\overrightarrow{F} = \rho^3 \widehat{\rho} + \rho^2 \sin \varphi \widehat{\varphi} + z^2 \widehat{z}$ in cylindrical coordinates.
- 9. Show the identity $\overrightarrow{\nabla} \times \left(\overrightarrow{\nabla} \times \overrightarrow{V}\right) = \overrightarrow{\nabla} \left(\overrightarrow{\nabla} \cdot \overrightarrow{V}\right) \nabla^2 \overrightarrow{V}.$
 - $\delta_n \left(x \right) = \begin{cases} 0 & |x| > \frac{1}{2n} \\ n & |x| < \frac{1}{2n} \end{cases}$

Evaluate the integral $\int_{-\infty}^{\infty} f(x) \,\delta_n(x-a) \, dx.$